
Arrayser v1.0

Arrayser
You and your friend are playing your favourite game, called Arrayser. Like all great games, Arrayser

involves an array A with N elements, initially set as A[i] = 1 for all 0 → i → N ↑ 1. You and your

friend alternate turns, with you going first. On each turn:

1. The player selects an index i with A[i] = 1.

2. A[i] is set to 0. Additionally,

• If i ↓= 0, then A[i ↑ 1] is set to 0.

• If i ↓= N ↑ 1, then A[i + 1] is set to 0.

Note that A[i ↑ 1] and A[i + 1] may have already been set to 0 in a previous turn.

The game ends when A[i] = 0 for all i.

After playing several games, you realise that your friend is playing completely randomly! Specifically,

they always select an index i uniformly at random from all indices where A[i] = 1.

Unlike your friend, you absolutely love playing Arrayser and want each game to last as long as

possible. In this problem, you will play T = 5000 games and your objective is to maximise the

mean
1

number of turns that each game lasts for.

Implementation Details

In this task, do not read from standard input nor write to standard output. Do not interact

with any files. Do not implement a main function. Instead, begin your program by including the

header file arrayser.h (#include "arrayser.h") and interact with it as described below.

Functions
Your solution will play T games in a single test case. You must implement play arrayser, which

is called once for each game:

void play arrayser(int N);

• N is the size of the array.

• This function must call do turn once for each of your turns.

• This function must return when the game ends.

• This function will be called T times in a single test case. We recommend resetting any global

variables each time it is called.

From play arrayser, you can make calls to do turn:

int do turn(int i);

• i must be an integer with 0 → i → N ↑ 1 where A[i] = 1.

• After you perform your turn, your friend will perform their turn. This function will return

the index i that your friend randomly chose. If your turn was the final turn of the game, then

this function will instead return ↑1.

If you violate any of the conditions listed above, your program will be judged as incorrect and you

will receive 0% of the points for the test case.

1The mean is the sum of the values divided by the number of values. For example, the mean of [3, 5, 4, 8] is
3+5+4+8

4 = 20
4 = 5.

1 of 2



Arrayser v1.0

Subtasks and Constraints

This problem has one subtask with one test case (note the unusually-high time limit). The case has

T = 5000 games all with N = 300. Let S be the mean number of turns that were played in each

game (this includes your turns and your friend’s turns).

• If S > 144.2, your score will be 100.

• If 137 → S → 144.2, your score will be on a linear scale from 40 to 100. That is, your score

will be 40 + 60 ↔ S→137
144.2→137 .

• If S < 137, your score will be 40 ↔
(

S
137

)10
.

A table with some values of S is shown below.

S 100 110 120 130 136 138 140 142 144

Points 1.72 4.45 10.63 23.67 37.17 48.33 65 81.67 98.33

Experimentation

In order to experiment with your code on your own machine, first downloaded the provided files

arrayser.cpp, arrayser.h and grader.cpp.

You should modify arrayser.cpp, which contains a basic example implementation.

Compile your solution with:

g++ -std=c++20 -O2 -Wall arrayser.cpp grader.cpp -o arrayser

This will create an executable arrayser which you can run with ./arrayser. If you have trouble

compiling, please send a message in the Communication section of the contest website.

The provided grader reads from standard input in the following format:

• The first and only line of input contains N and T .

Sample Grader Input

The following input will run T = 10 games, each with N = 300:

300 10

Random Seed

The sample grader has an integer value RANDOM SEED defined on line 9. If this variable is changed,

then the grader will make di!erent random choices. The grader used for judging will use a di!erent

random seed to the sample grader.

Sample Grader Debug Output

The sample grader has an integer value DEBUG LEVEL defined on line 10, which is set to 1 by default:

• If DEBUG LEVEL = 0, then the sample grader will print the mean number of turns used after

all T games conclude.

• If DEBUG LEVEL = 1, then after each game the grader will print the number of turns used in

that game. It will also print the mean after all games conclude.

• If DEBUG LEVEL = 2, then after each turn the grader will print information about that turn.

In particular, the grader will print the index that was chosen by your code and the grader, as

well as the current array A. It will also print the mean after all games conclude.

2 of 2



Flooding v1.0

Flooding
The Bitwise Ranges consist of N mountains, numbered 1 to N from left to right. The ith mountain
is 1 kilometre wide and Hi kilometres tall. Atop each mountain is a village.

The government is planning for Q possible scenarios. In the ith scenario, Wi massive downpours of
rain will land on the first mountain. Each downpour delivers enough water to submerge a single
village in 1 kilometre of water. After the water lands on the first mountain, it will flow using the
following rules:

• If the water can flow down, then it will.
• Otherwise, if the water can flow to the right, then it will.
• Finally, if the water cannot flow down or to the right, then it will not move.

If water flows rightwards o! mountain N , then its future movements can be ignored.

Figure 1: An example downpour. The rain initially lands on mountain 1 and eventually finishes
atop mountain 3. Each pane shows one step of the process.

Figure 2: An example scenario with Wi = 6 downpours of rain. The final locations of the 6
downpours are labelled.

1 of 3



Flooding v1.0

A village is said to be flooded if at least one downpour passes over it, even if the downpour
doesn’t finish at this village.

In each scenario, the government has a budget of K dollars. For one dollar, the government can
raise the height of a single mountain by 1 kilometre. By wisely spending their K dollars, the
government hopes to minimise the number of villages that are flooded. You have been asked to
calculate the minimum number of villages that will be flooded if the government optimally spends
its K dollars before the downpours begin.

Note that the Q scenarios are independent. That is, all heights return to their original values before
future scenarios begin. However, the budget K is the same in all scenarios.

Subtasks and Constraints

For all subtasks:

• 2 → N → 200 000.
• 1 → Q → 200 000.
• 0 → K → 1 000 000 000.
• 1 → Hi, Wi → 1 000 000 000 for all i.

Additional constraints for each subtask are given below.

Subtask Points Additional constraints
1 17 N, Q → 50 and K = 0.
2 20 N, Q → 50.
3 18 N → 2000.
4 21 K = 0.
5 24 No additional constraints.

Input

• The first line of input contains the integer N .
• The second line contains N integers H1, H2, . . . , HN .
• The third line contains the integers Q and K.
• The fourth line contains the Q integers W1, W2, . . . , WQ.

Output

Output Q integers on a single line: the answers to the Q scenarios.

Sample Input 1

4
3 2 1 4
4 0
1 6 7 1000

Sample Output 1

3 3 4 4

2 of 3



Flooding v1.0

Sample Input 2

4
3 2 1 4
3 2
1 7 1000

Sample Output 2

1 3 4

Sample Input 3

7
2 1 1 3 1 2 1
4 1
10 9 8 1

Sample Output 3

7 5 3 2

Explanation

The first sample case is shown in Figure 1 and Figure 2 earlier in the statement. The government
has a budget of K = 0 and so cannot raise any mountains:

• When W1 = 1 and W2 = 6, the first three villages are flooded.
• When W3 = 7 and W4 = 1000, all four villages are flooded.

The second sample case has the same mountains as the first case, but the budget is K = 2:

• When W1 = 1, the government can raise the second mountain by 2 kilometres, so that it now
has a height of 4 kilometres. Now, only the first village is flooded.

• When W2 = 7, the goverment can raise the first and last mountains by 1 kilometre each.
Then, only the first three villages are flooded.

• When W3 = 1000, all four villages will be flooded regardless of how the budget is spent.

The third sample case is shown in Figure 3 below. The government has a budget of K = 1:

• When W1 = 10, all seven villages will be flooded regardless of how the budget is spent.
• When W2 = 9, the government can raise the fourth mountain by 1 kilometre, so that only

five villages are flooded.
• When W3 = 8, the government can raise the fourth mountain by 1 kilometre, so that only

three villages are flooded.
• When W4 = 1, the government can raise the third mountain by 1 kilometre, so that only two

villages are flooded.

Figure 3: Sample input 3. On the left are the original mountains. On the right is the second
scenario with W2 = 9, where the fourth mountain has been raised by 1 kilometre. The first five
villages are flooded.

3 of 3



Tree Dash v1.1

Tree Dash
You have come across a rooted tree. This tree consists of N vertices, numbered from 1 to N . One

of these vertices, labelled R, serves as the root.
Each non-root vertex i has a parent vertex Pi, where Pi →= i. If you start at any vertex and

repeatedly move to its parent, then its parent’s parent, and so on, you will eventually reach the

root vertex. The vertices encountered on this path are called the ancestors of i.

Vertex i is a child of vertex Pi. The children of a vertex, along with their children, and so on, are

called the descendants of i.

Figure 1: An example tree with N = 8. The root is R = 4 and each non-root has an arrow to its

parent. Vertex 1 has one ancestor (4) and five descendants (2, 3, 5, 6, 8), while vertex 8 has three

ancestors (1, 2, 4) and no descendants. The root has no ancestors and N ↑ 1 descendants.

If you are at vertex i in this tree, you can travel to any of the following vertices:

• The ancestor of i with the minimum index (if i has at least one ancestor).

• The ancestor of i with the maximum index (if i has at least one ancestor).

• The descendant of i with the minimum index (if i has at least one descendant).

• The descendant of i with the maximum index (if i has at least one descendant).

A vertex u can reach another vertex v if it is possible to travel from u to v, potentially using some

intermediate vertices.

Each vertex has a weight Wi. Compute the sum of Wu ↓ Wv across all ordered pairs of vertices

(u, v) such that u →= v and vertex u can reach v.

Subtasks and Constraints

For all subtasks:

• 2 ↔ N ↔ 500 000.

• 1 ↔ R ↔ N .

• 1 ↔ Pi ↔ N for all i →= R.

• 1 ↔ Wi ↔ 1000 for all i.
• If you start at any vertex and repeatedly move to its parent, then its parent’s parent, and so

on, you will eventually reach the root vertex.

1 of 3



Tree Dash v1.1

Additional constraints for each subtask are given below.

Subtask Points Additional constraints

1 20 N ↔ 100 and the tree is a line (see ↗ below).

2 15 N ↔ 3000.

3 25 The tree is a line (see ↗ below).

4 20 The root is 1 and it has only one child, which is N . In other words, R = 1,

PN = 1, and Pi →= 1 for all 2 ↔ i ↔ N ↑ 1.

5 20 No additional constraints.

↗: a line is a tree where every vertex has at most 1 child. Sample input 2 is a line.

Input

• The first line of input contains the two integers N and R.

• The second line contains N integers P1, P2, . . . , PN . Since R does not have a parent, PR is

replaced with a 0.

• The third line contains N integers W1, W2, . . . , WN .

Output

Output a single integer, the sum of Wu ↓ Wv across all pairs u →= v where vertex u can reach v.

Note: Your solution may involve integers which are large. Consider using 64-bit integers (‘long

long’ in C++) in your solution.

Sample Input 1

8 4
4 1 1 0 3 3 4 2
1 1 1 1 1 1 1 1

Sample Output 1

30

Sample Input 2

6 5
6 5 4 2 0 3
1 2 3 4 5 6

Sample Output 2

228

Sample Input 3

12 1
0 3 12 3 6 12 8 2 8 12 5 1
70 92 86 72 22 79 20 98 42 56 76 34

Sample Output 3

228776

Explanation

Sample input 1 shown in Figure 1 on the first page:

1. Vertex 1 can reach vertices 2, 4, 8.

2. Vertex 2 can reach vertices 1, 4, 8.

3. Vertex 3 can reach vertices 1, 2, 4, 5, 6, 8.

2 of 3



Tree Dash v1.1

4. Vertex 4 can reach vertices 1, 2, 8.

5. Vertex 5 can reach vertices 1, 2, 4, 8.

6. Vertex 6 can reach vertices 1, 2, 4, 8.

7. Vertex 7 can reach vertices 1, 2, 4, 8.

8. Vertex 8 can reach vertices 1, 2, 4.

Sample input 2 is a line shown in Figure 2:

1. Vertex 1 can reach vertices 2, 5, 6.

2. Vertex 2 can reach vertices 1, 5, 6.

3. Vertex 3 can reach vertices 1, 2, 5, 6.

4. Vertex 4 can reach vertices 1, 2, 5, 6.

5. Vertex 5 can reach vertices 1, 2, 6.

6. Vertex 6 can reach vertices 1, 2, 5.

Figure 2: Sample input 2. Each vertex has Wi = i.

Sample input 3 is a tree satisfying the constraints of subtask 4, shown in Figure 3:

1. Vertex 1 can reach vertices 2, 7, 9, 11, 12.

2. Vertex 2 can reach vertices 1, 7, 9, 11, 12.

3. Vertex 3 can reach vertices 1, 2, 7, 9, 11, 12.

4. Vertex 4 can reach vertices 1, 2, 7, 9, 11, 12.

5. Vertex 5 can reach vertices 1, 2, 7, 9, 11, 12.

6. Vertex 6 can reach vertices 1, 2, 5, 7, 9, 11, 12.

7. Vertex 7 can reach vertices 1, 2, 9, 11, 12.

8. Vertex 8 can reach vertices 1, 2, 7, 9, 11, 12.

9. Vertex 9 can reach vertices 1, 2, 7, 11, 12.

10. Vertex 10 can reach vertices 1, 2, 7, 9, 11, 12.

11. Vertex 11 can reach vertices 1, 2, 7, 9, 12.

12. Vertex 12 can reach vertices 1, 2, 7, 9, 11.

Figure 3: Sample input 3.

3 of 3


