
Beacons v1.0

Beacons
After getting lost this morning, you have decided to fix the navigation problem plaguing your city.

Your city consists of N intersections (numbered from 1 to N) connected by N ≠ 1 bidirectional

roads (numbered from 1 to N ≠ 1). The ith road connects intersections ui and vi, and it is possible

to travel between any pair of intersections using some sequence of roads.

There are K beacons in the city (numbered from 1 to K), where the ith beacon is at intersection bi.

When you find yourself lost at an intersection, you ping each beacon to determine your distance from

that beacon, which is defined as the number of roads on the shortest path between you and that

beacon. Using this information, you hope to determine your location. Unfortunately, depending on

the placement of the beacons, it may not be possible to determine which intersection you are at!

Figure 1: An example city with N = 6 intersections and K = 2 beacons. The distance from each

beacon is written below the intersections. Using the beacons, you cannot determine the di�erence

between intersections 5 and 6. You can fix this by building one more beacon at intersection 5.

You cannot move existing beacons, but you can build more. What is the minimum number of extra

beacons you must build so that it is always possible to determine your location?

Subtasks and Constraints

For all subtasks:

• 2 Æ N Æ 200 000.

• 0 Æ K Æ N .

• 1 Æ bi Æ N for all i.
• bi ”= bj for all i ”= j.

• 1 Æ ui < vi Æ N for all i.
• It is possible to travel between any pair of intersections using the roads.

Additional constraints for each subtask are given below.

1 of 3

Beacons v1.0

Subtask Points Additional constraints

1 5 K = 0 and your city is a line. That is, ui = i and vi = i + 1 for all roads.

2 9 Your city is a line. That is, ui = i and vi = i + 1 for all roads.

3 19 N Æ 100 and the answer is 0 or 1.

4 24 The answer is 0 or 1.

5 22 K = 0.

6 21 No additional constraints.

Input

• The first line of input contains the integers N and K.

• The second line of input contains the K integers b1, . . . , bK .

• The next N ≠ 1 lines of input describe roads. The ith line contains two integers ui and vi.

Output

Output a single integer: the minimum number of extra beacons you must build so that it is always

possible to determine your location.

Sample Input 1

6 2
2 3
1 2
1 3
2 4
3 5
3 6

Sample Output 1

1

Sample Input 2

6 0

1 2
1 3
2 4
3 5
3 6

Sample Output 2

2

Sample Input 3

4 1
1
1 2
2 3
3 4

Sample Output 3

0

2 of 3

Beacons v1.0

Explanation

The first sample case corresponds to the example on the first page.

In the second sample case, there are initially no beacons. You can build 2 beacons, as shown in

Figure 2.

Figure 2: A solution to Sample Input 2.

In the third sample case, no new beacons are needed.

Figure 3: Sample Input 3.

3 of 3

Maximum Matrix v1.0

Maximum Matrix
Neo likes matrices. Neo’s favourite type of matrix is a grid with R rows and C columns, where

each cell in the matrix contains a positive integer.

Neo assigns a score (A, B) to each matrix:

• A is the number of ascending rows. A row is ascending if the values in this row are ascending

when read from left to right. Specifically, if the values in the row are v1, v2, . . . , vC from left

to right, then the row is ascending if v1 Æ v2 Æ . . . Æ vC .

• B is the number of constant columns. A column is constant if the values in this column are

all the same.

2 3 3 6 8

2 3 1 6 8

1 3 6 6 8
Figure 1: An example matrix with R = 3 rows and C = 5 columns. There are 2 ascending rows

(the first and third) and 3 constant columns (the second, fourth, and fifth). Neo’s score for this

matrix is (2, 3).

A matrix is better than another matrix if it has a lexicographically higher score. In particular,

assume that you have one matrix with a score (A, B) and another matrix with a score (AÕ, BÕ
).

The first matrix is better if one of the following conditions holds:

• A > AÕ
, or

• A = AÕ
and B > BÕ

.

For example,

• A matrix with score (5, 3) is better than a matrix with score (4, 4).

• A matrix with score (5, 3) is better than a matrix with score (5, 2).

• A matrix with score (5, 3) is not better than a matrix with score (5, 4).

• A matrix with score (5, 3) is not better than a matrix with score (6, 1).

You have found a matrix with some missing values. To impress Neo, you want to fill in the missing

values with positive integers in a way that creates the best possible matrix. What is the score of

the best matrix you can create?

1 of 3

Maximum Matrix v1.0

Subtasks and Constraints

For all subtasks:

• 1 Æ R Æ 250 000 and 1 Æ C Æ 250 000.

• R ◊ C Æ 1 000 000.

• All non-missing values in the matrix are positive integers from 1 to 1 000 000, inclusive.

Additional constraints for each subtask are given below.

Subtask Points Additional constraints

1 7 R = 1.

2 18 The answer has A = R.

3 10 R Æ 10, C Æ 10, and every column has at least one value that is not missing.

4 8 R Æ 10 and C Æ 10.

5 17 R Æ 100, C Æ 100, and every column has at least one value that is not

missing.

6 11 R Æ 100 and C Æ 100.

7 14 R Æ 5 000 and C Æ 5 000.

8 15 No additional constraints.

Input

• The first line of input contains the integers R and C.

• The next R lines of input each contain C integers, describing the Matrix. Each value in the

matrix is either a positive integer or zero, where zero represents a missing value.

Output

Output two integers A and B on a single line, representing the score (A, B) of the best matrix that

can be created.

Sample Input 1

3 5
2 3 3 6 0
0 3 1 6 8
1 3 6 0 8

Sample Output 1

2 3

Sample Input 2

2 3
1 0 2
3 0 4

Sample Output 2

2 0

Sample Input 3

2 4
2 4 0 1
2 0 3 1

Sample Output 3

0 4

2 of 3

Maximum Matrix v1.0

Explanation

The first sample case has three missing values. One optimal way to fill in the missing values is to

create the matrix shown in Figure 1, with A = 2 ascending rows and B = 3 constant columns.

The second sample case can be filled in as follows, with A = 2 ascending rows and B = 0 constant

columns:

1 1 2
3 4 4

The third sample case can be filled in as follows, with A = 0 ascending rows and B = 4 constant

columns:

2 4 3 1
2 4 3 1

3 of 3

Hedge Maze II v1.0

Hedge Maze II

Perrito has found himself stuck in a hedge maze!

He knows that the maze has N rooms, numbered from 1 to N , and that there are N ≠1 passageways
that each connect two di�erent rooms. If the passageways are bidirectional, then it is possible to
travel between any pair of rooms using the passageways. However, to make the maze more di�cult,
each passageway can only be travelled in one direction. Because of this, it is not necessarily
possible to travel between every pair of rooms.

Unfortunately, Perrito does not know where these passageways are and his first goal is to discover
all the passageways. That is, he must determine the N ≠ 1 pairs of rooms that are connected by
passageways, and the direction of each passageway.

To do this, the maze designer has allowed Perrito to ask queries. In each query, Perrito provides
the maze designer with two non-empty arrays A and B:

• The arrays A and B each contain integers from 1 to N , inclusive.
• The arrays must be disjoint and contain distinct integers. That is, each integer can appear at

most once across both arrays.

The maze designer will answer each query with a single integer: the number of pairs of integers
(a, b), where a is in the array A and b is in the array B, for which there exists a path in the maze
from room a to room b.

Let |A| represent the number of integers in the array A, and |B| represent the number of integers
in the array B. Then, the cost of the query is |A| ◊ |B|. Perrito is allowed to ask queries with a
total cost of up to 10 000 000. Additionally, your score depends on the number of queries asked.
See the scoring section for details.

Figure 1: An example maze

Figure 1 has a maze with N = 5 rooms. If Perrito asked a query with A = [1, 3] and B = [2, 4],
then the maze designer would answer with 3:

• There exists a path from room 1 to room 2, room 1 to room 4, and room 3 to room 2.
• There does not exist a path from room 3 to room 4.

The cost of this query is 2 ◊ 2 = 4.

1 of 4

Hedge Maze II v1.0

Implementation Details
In this task, do not read from standard input nor write to standard output. Do not interact
with any files. Do not implement a main function. Instead, begin your program by including the
header file maze.h (#include "maze.h") and interact with it as described below.

Functions
You must implement the function map maze, which is called once in every test case:

void map maze(int N);

• N is the number of rooms in the maze.
• From this function you can call query.
• You must call report passageway exactly N ≠ 1 times.

From map maze, you can make calls to the following functions:

int query(vector<int> A, vector<int> B);

• A and B: Your chosen arrays A and B.
• A and B must both be non-empty.
• A and B must contain integers from 1 to N inclusive, and each integer can appear at most

once across both of the arrays.
• The sum of |A| ◊ |B| across all queries can be at most 10 000 000.
• This function returns the number of pairs of integers (a, b), where a is in the array A and b is

in the array B, such that there exists a path in the maze from room a to room b.
• Your score depends on the number of times this function is called. See the scoring

section for details.

void report passageway(int i, int j);

• You should call this function if there is a directed passageway from room i to room j.
• You should call this function exactly N ≠ 1 times: once for each passageway in the maze.

If you violate any of the conditions listed above, your program will be judged as incorrect and you
will receive 0% of the points for the test case.

The grader is not adaptive. This means that answers to all queries are based on a fixed input.

Subtasks and Constraints
For all subtasks:

• 3 Æ N Æ 1 000.
• There are N ≠ 1 passageways in the maze.
• If passageways are made bidirectional, then it is possible to travel from any room to any other

room using the passageways.

Additional constraints for each subtask are given below.

Subtask Points Additional constraints
1 10 Each passageway has one of its endpoints at room 1.
2 18 There exists a room i, such that every passageway has one of its endpoints at

room i.
3 22 There exists a room i, such that for every other room j, there exists a path

from room i to room j.
4 50 No additional constraints.

2 of 4

Hedge Maze II v1.0

Scoring
If your solution fails to find all the passageways, or violates any of the conditions in the Implemen-
tation Details section, your score will be 0.

Otherwise, let Q be the number of calls that your solution makes to query:

• Subtask 1, 2, and 3: You score all the points for these subtasks if Q Æ 13 000, and 0 points
otherwise.

• Subtask 4:

– If Q Æ 10 000, your score is 50. Otherwise,
– If Q Æ 11 000, your score is 43. Otherwise,
– If Q Æ 12 000, your score is 36. Otherwise,
– If Q Æ 13 000, your score is 31. Otherwise,
– If Q Æ 999 000, your score is 20. Otherwise,
– Your score is 0.

Your score for a subtask will be the minimum score of all test cases in the subtask.

Experimentation
In order to experiment with your code on your own machine, first downloaded the provided files
maze.cpp, maze.h and grader.cpp.

You should modify maze.cpp, which contains a basic example implementation.

Compile your solution with:

g++ -std=c++17 -O2 -Wall maze.cpp grader.cpp -o maze

This will create an executable maze which you can run with ./maze. If you have trouble compiling,
please send a message in the Communication section of the contest website.

The provided grader reads from standard input in the following format:

• The first line of input contains N .
• The next N ≠ 1 lines of input describe the passageways. The ith such line contains two

integers a and b, representing a one-way passageway from room a to room b.

Note that the sample grader does not check whether the provided passageways form a valid input.

Sample Grader Input & Sample Session
The sample grader is supplied with the following input:

5

1 3

1 4

3 2

5 3

This corresponds to the diagram on the first page.

One possible interaction is described below:

3 of 4

Hedge Maze II v1.0

Grader Student Description
map maze(5) The grader calls your program.

query({1, 3}, {2, 4}) You ask a query with A = {1, 3} and
B = {2, 4}.

returns 3 The grader responds with 3. This is explained
in the example on the first page.

report passageway(1, 4) You report that there is a passageway from
room 1 to room 4. This is correct.

query({5}, {1}) You ask a query with A = {5} and B = {1}.

returns 0 There is not a path from room 5 to room 1,
and so the grader returns 0.

report passageway(1, 5) You report that there is a passageway from
room 1 to room 5. This is incorrect, and your
program will score 0.

4 of 4

