
FARIO 2021 — Telefrogs 1

Telefrogs

Input File Output File Time Limit Memory Limit
standard input standard output 1 second 256 MiB

Opal is a scientist studying the movement patterns of a particular species of supernatural amphibian,
called the teleporting frog, or telefrog for short. Telefrogs are just like normal frogs, but instead of
hopping, they teleport1.

There is a colony of K telefrogs living together in a pond that Opal has been studying for D days.
The pond contains N lily-pads numbered from 1 to N which the telefrogs like to sit on. Every frog
was sitting on lily-pad 1 before Opal began studying the colony.

• At the start of each day, each telefrog may choose to teleport to another lily-pad in the pond.
• At the end of each day, Opal records the number of frogs on each lily-pad. In particular, there

are exactly cij frogs on the j-th lily-pad during the i-th day.

No new frogs joined the colony and no frog ever went missing during her study.

At the end of her study, Opal realised that some of the K frogs might actually be impostor frogs,
who do not have the ability to teleport! She found N − 1 hidden one-way tunnels between pairs of
lily-pads. The i-th tunnel allows impostors on lily-pad ai to travel to lily-pad bi (ai < bi). It is
possible to travel from lily-pad 1 to any other lily-pad through a sequence of tunnels.

Every night, the impostors, as they lack the ability to teleport, may travel to another lily-pad
through a sequence of tunnels.

Your task is to help Opal determine the maximum number of impostors there could be.

Subtasks and Constraints

For all subtasks, you are guaranteed that:

• 2 ≤ N ≤ 1000, 1 ≤ K ≤ 109 and 2 ≤ D ≤ 200
• 0 ≤ cij ≤ K, for all i and j.
• ci1 + ci2 + . . . + ciN = K, for all i. That is, the number of frogs observed on each day is K.
• 1 ≤ ai < bi ≤ N , for all i.
• It is possible to travel from lily-pad 1 to any other lily-pad through a sequence of tunnels.

Additional constraints for each subtask are given below.

Subtask Points Additional constraints
1 14 D = 2 and ai + 1 = bi, for all i.
2 26 ai + 1 = bi, for all i.
3 16 D = 2
4 13 ai = 1, for all i.
5 31 No additional constraints.

1Nobody knows how the frogs actually teleport. Seems sus.

v1.0



FARIO 2021 — Telefrogs 2

Input

• The first line of input contains the integers N , K and D.
• The next N − 1 lines describe the one-way tunnels. The i-th line contains ai and bi.
• The next D lines of input contain N integers each. The j-th integer on the i-th such line is

cij .

Output

Output a single integer, the maximum number of impostors that could have been among the
telefrogs.

Sample Input 1

6 4 3
1 2
3 6
2 5
3 4
1 3
2 1 0 0 0 1
1 3 0 0 0 0
1 1 0 1 0 1

Sample Output 1

2

Sample Input 2

4 3 2
2 3
3 4
1 2
0 0 2 1
3 0 0 0

Sample Output 2

0

v1.0



FARIO 2021 — Telefrogs 3

Explanation

In Sample Case 1, there could have been two impostors:

• The first impostor travels to lily-pad 2 on the first day, does nothing on the second day, and
does nothing on the third day.

• The second impostor does nothing on the first day, does nothing on the second day, and
travels to lily-pad 6 via lily-pad 3 on the third day.

• The first telefrog does nothing on the first day, teleports to lily-pad 2 on the second day, and
teleports to lily-pad 1 on the third day.

• The second telefrog teleports to lily-pad 6 on the first day, teleports to lily-pad 2 on the
second day, and teleports to lily-pad 4 on the third day.

It can be shown that there could not have been more than two impostors.

In Sample Case 2, none of the frogs could have been impostors.

Figure 1: In each case, black squares represent telefrogs and white squares represent impostors.

v1.0



FARIO 2021 — River II 1

River II

Input File Output File Time Limit Memory Limit
standard input standard output 1.5 seconds 256 MiB

The N residents of Ragden reside underground in dingy rectangular hollows far below the extravagant
royal palaces of the Great Tree.

Tired of the constant flooding from events such as the Great Storm and Lauren Forgot To Turn Off
The Sprinklers, the residents have asked you to build an artificial underground river through which
the storm waters can flow.

The Underground can be described as a rectangle W metres wide, and H metres deep. The point x
metres from the left edge of The Underground and y metres below the surface is denoted (x, y).

The i-th hollow is defined by the rectangle with top-left corner (ai, bi) and bottom-right corner (ci,
di). No two hollows intersect. Hollows may touch on their sides or at corners.

Figure 1: An example with W = 8, H = 6

v1.0



FARIO 2021 — River II 2

The river can be thought of as a sequence of points (x0, y0), (x1, y1), (x2, y2), . . ., (xk, yk), that
form a poly-line.

• The river must start on the surface. That is, y0 = 0.
• The river must end on the bottom of The Underground. That is, yk = H.
• The river must never flow upwards. That is, yi ≤ yi+1 for all i.
• The river must not intersect the interior of any hollows. The river may touch the sides or

corners of the hollows.

Figure 2: The top three rivers are valid. The bottom three rivers are invalid.

Notice that the river splits The Underground into a left-side and a right-side. If the i-th hollow is
on the left-side, then the residents will generate li happiness points. Similarly, if the i-th hollow is
on the right-side, then the residents will generate ri happiness points. Note that li and ri may be
negative.

What is the greatest total happiness you can achieve?

v1.0



FARIO 2021 — River II 3

Subtasks and Constraints

For all subtasks, you are guaranteed that:

• 1 ≤ N ≤ 100 000.
• 1 ≤ W, H ≤ 1 000 000.
• 0 ≤ ai < ci ≤ W , for all i.
• 0 ≤ bi < di ≤ H, for all i.
• −10 000 ≤ li, ri ≤ 10 000, for all i.
• No two hollows intersect.

Additional constraints for each subtask are given below.

Subtask Points Additional constraints
1 6 All hollows have height 1. That is, bi + 1 = di for all i.
2 23 W, H, N ≤ 100.
3 14 W, H ≤ 1000.
4 25 N ≤ 5000.
5 28 All hollows have width 1. That is, ai + 1 = ci for all i.
6 4 No additional constraints.

Input

• The first line of input contains the three integers N , W and H.
• The next N lines describe the hollows. The i-th line contains ai, bi, ci, di, li and ri.

Output

Output a single integer, the greatest total happiness you could achieve.

Sample Input

7 8 6
5 0 7 2 -30 -9
3 2 4 3 1 9
1 3 3 4 -3 -8
2 4 4 5 -10 10
4 3 5 5 0 2
6 3 8 4 40 6
6 4 7 6 1 3

Sample Output

30

v1.0



FARIO 2021 — River II 4

Explanation

By drawing the river as shown, we can achieve a total happiness of −9+9+−3+−10+0+40+3 = 30.

Figure 3: The sample case. Hollows on the left of the river are marked yellow, hollows on the right
are blue.

v1.0



FARIO 2021 — Lucky Symbols 1

Lucky Symbols

Input File Output File Time Limit Memory Limit
N/A N/A 2 seconds 512 MiB

Lucky Symbols is a game played on an R by C grid of squares. The rows are numbered from 0 to
R− 1 from top to bottom, and the columns are numbered from 0 to C − 1 from left to right.

The game is played over 100 rounds. The goal of each round is to place symbols into the grid to
maximise your score at the end of the round.

There are N types of symbols, numbered from 0 to N − 1. The i-th symbol has a value of ai.

Each round is made up of 1000 turns. At the start of each turn, you are given one of the N types
of symbols uniformly at random (each symbol is equally likely). You must then choose either to:

• Place the symbol in one of the empty squares of the grid.
• Discard the symbol without placing it in the grid. You must discard if there are no empty

squares in the grid.

At the end of each turn, you receive points equal to the total sum of values of all symbols in the
grid. For example, if you ended a turn with the grid below, you would receive 50 + 10 + 20 + 20 +
20 + 50 + 100 + 100 = 370 for that turn.

Figure 1: An example grid with R = 3, C = 4 and N = 4

After 1000 turns the round ends and you get to earn some bonus points! There are E bonus symbol
pairs. The i-th bonus pair gives you bi points for each pair of adjacent (touching sides) squares,
where one square contains a symbol of type xi and the other square contains a symbol of type yi.

For example, if you ended a round with the grid above, you would receive 400 bonus points for that
round:

• Three {0, 1} bonus pairs: 3× 90 = 270
• No {0, 2} bonus pairs.
• One {0, 3} bonus pair: 1× 30 = 30.
• One {3, 3} bonus pair: 1× 100 = 100.

After your score for the round is calculated, the board is cleared of all symbols and the next round
starts. Your task is to write a program to maximise your average score over all 100 rounds.

v2.3



FARIO 2021 — Lucky Symbols 2

Subtasks and Constraints
For all subtasks, you are guaranteed that:

• 0 ≤ ai, for all i.
• 1 ≤ bi, for all i.
• 0 ≤ xi ≤ yi < N , for all i. Note that it is possible for xi = yi.
• No pair of symbols appears more than once as a bonus pair. That is, either xi 6= xj or yi 6= yj

for all i and j where i 6= j.

Subtask Points R C N E Max ai Max bi Additional Constraints
1 8 1 1 1000 0 1000 N/A
2 8 3 3 1000 0 1000 N/A
3 18 50 50 10 10 0 1 xi = yi for all i
4 18 15 15 2000 2000 0 1 xi = yi for all i
5 16 20 20 10 50 10 2000
6 16 20 20 100 500 10 2000
7 16 20 20 1000 5000 10 2000

In this problem, each subtask only has one test case. These test cases are available for download
from the Attachments page. Note that in each case, the values of ai and bi are generated uniformly
at random. Similarly, the E bonus pairs are generated such that each pair has an equal probability
of being chosen.

Recall that your score for this problem is the sum of your scores for each subtask. Your score for a
subtask is the maximum score obtained among any of your submissions. As such, you may wish to
solve different subtasks in different submissions.

Scoring
If your program does not successfully play the game as described in the Implementation section,
then you will receive 0% of the points for that subtask.

Otherwise, your score will be on a linear sliding scale based on two threshold scores Omin and Omax

(Omin < Omax). Your score scales linearly from 0% to 100% between Omin and Omax. Specifically,
let S be the average score achieved by your program. Then:

• If S > Omax, you will score 100% of the points.
• If Omin ≤ S ≤ Omax, you will score b(S −Omin)/(Omax −Omin)× 100c% of the points.
• If S < Omin, you will score no points.

The parameters Omin and Omax for each subtask are in the table below. Omax is the judges’ best
score for that subtask.

Subtask Omin Omax

1 450000 953000
2 4500000 8120000
3 3000 3590
4 0 104
5 2500000 3620000
6 1500000 3260000
7 1500000 2580000

v2.3



FARIO 2021 — Lucky Symbols 3

Implementation
Input / Output

In this task, you must not read from or write to any input/output files. Instead, your solution must
interact with the functions in the header file lucky.h.

Do not output anything to stdout, or you will receive 0% points for the test case.

Functions

You must not implement a main function. Instead you should #include "lucky.h" and implement
the functions init, newRound and playTurn described below:

void init(int R, int C, int N, int E,
std::vector<int> a, std::vector<int> b, std::vector<int> x, std::vector<int> y)

where:

• R, C, N and E are the corresponding variables described above.
• For every 0 ≤ i < N , a[i] = ai.
• For every 0 ≤ j < E, b[j] = bj , x[j] = xj , and y[j] = yj .
• This function is called first to initialise your program and start the game.

void newRound()

This function is called at the start of every round. It will be called 100 times, once for every round
in the game.

void playTurn(int symbol)

After each call of newRound, this function is called 1000 times, once for each turn in the round.
symbol is the type of symbol you are given on that turn.

Your implementation of playTurn must call either place or discard as described below:

• void place(int r, int c); – call this function to place the symbol in the square located
in the r-th row and c-th column.

• void discard(); – call this function to discard the symbol.

The judge’s grader will choose a symbol to give you uniformly at random on each turn. The grader
will not adapt the symbols to your choices to place or discard symbols. The sequence of symbols
chosen in each test case is fixed (that is, the symbols given to playTurn will be the same for every
submission on that test case).

Failure conditions

Your program:

• Must not call place or discard from inside init or newRound.
• Must call either place or discard exactly once during each call of playTurn.
• When calling place(r, c), the parameters must satisfy 0 ≤ r < R and 0 ≤ c < C
• When calling place(r, c), the square in the r-th row and c-th column must not have a

symbol in it already.

If your program violates any of these conditions, it will be judged as incorrect and you will score
0% of the marks for that test case.

v2.3



FARIO 2021 — Lucky Symbols 4

Experimentation
In order to experiment with your code on your own machine, first download the provided files
lucky.cpp, lucky.h and grader.cpp, which should be placed in the same directory as your code.
Please note that the grader that is used may have different behaviour to the provided grader. You
should modify lucky.cpp, which contains stub implementations of init, newRound and playTurn.

Compile your solution with:

g++ -std=c++11 -O2 -Wall lucky.cpp grader.cpp -o lucky

This will create an executable lucky, which you can run with ./lucky. If you have trouble
compiling, please send a message in the Communication section of the contest website.

The compiled sample grader will read input from standard input in the following format:

• The first line of input contains the four integers R, C, N and E.
• The second line of input contains N integers. The i-th integer is ai.
• The next E lines of input describe the bonus pairs. The i-th such line contains bi, xi and yi.

For each test case, the sample grader will play 100 rounds. Each round begins with a call to
newRound, followed by 1000 calls to playTurn.

At the end of the game, the sample grader will print your average score to standard output.

Note that the sample grader may not be as strict as the grader used for judging. In particular, the
sample grader may not check all the failure conditions specified above.

v2.3



FARIO 2021 — Lucky Symbols 5

Sample Grader Input and Sample Session
3 4 4 4
20 50 10 100
90 0 1
70 0 2
30 0 3
100 3 3

One possible sample interaction is shown below:

Grader Student Description
init(3, 4, 4, 4, [20, 50, 10,
100], [90, 70, 30, 100], [0,

0, 0, 3], [1, 2, 3, 3])

The grader initialises your program.

newRound() The grader starts a new round.
playTurn(2) You get a symbol of type 2.

place(0, 1) You place it in row 0, column 1.
playTurn(3) You get a symbol of type 3.

discard() You discard it.
playTurn(0) You get a symbol of type 0.

place(0, 2) You place it in row 0, column 2.
playTurn(2) You get a symbol of type 2.

place(2, 3) You place it in row 2, column 3.
Round ends Your score for the round is 200 points.

newRound() The grader starts a new round.
playTurn(2) You get a symbol of type 2.

discard() You discard it.
playTurn(0) You get a symbol of type 0.

discard() You discard it.
playTurn(2) You get a symbol of type 2.

discard() You discard it.
playTurn(1) You get a symbol of type 1.

discard() You discard it.
Round ends Your score for the round is 0 points.

grader terminates The grader records your average score.

v2.3



FARIO 2021 — Lucky Symbols 6

Ordinarily, the grader would play 100 rounds of 1000 turns each. However, for the sake of brevity
the same session only has 2 rounds, with 4 turns each.

Your score in the first round is 200 points:

• At the end of the 1st turn, you receive 10 points.
• At the end of the 2nd turn, you receive 10 points.
• At the end of the 3rd turn, you receive 30 points.
• At the end of the 4th turn, you receive 80 points.
• At the end of the round, you score 70 bonus points.

Your score in the second round is 0 points (as you discarded everything).

Your average score at the end of the game is 100 points.

Figure 2: The state of the grid at the end of the first round of the Sample Session

v2.3


	Telefrogs
	Subtasks and Constraints
	Input
	Output
	Sample Input 1
	Sample Output 1
	Sample Input 2
	Sample Output 2
	Explanation

	River II
	Subtasks and Constraints
	Input
	Output
	Sample Input
	Sample Output
	Explanation

	Lucky Symbols
	Subtasks and Constraints
	Scoring
	Implementation
	Input / Output
	Functions
	Failure conditions

	Experimentation
	Sample Grader Input and Sample Session


